
ci

N

r
DTIC
ELECTE

DEPARTMENT OF THE AIR FORCE SJAN 2 2199|11
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

_,Wright-Pttersoo Aii F UL Uus,

75W"



AFIT/GCS/ENG/90D.08 62

AN EMPIRICAL STUDY OF
COMBINING COMMUNICATING PROCESSESIN A PARALLEL DISCRETE EVENT SIMULATION

THESIS

Ann Kathryn Lee
Captain, USAF

AFIT/GCS/ENG/90D'O08 Doric
ELECTE'f
JAN 2 2 991 U

I

JJA pprovedI for pu 111c reClefl.R; (IItrI l I o ti) 1 l lmltLed



AFIT/GCS/ENG/90D.oS

An Empirical Study of Combining Communicating Processes

in a Parallel Discrete Event Simulation

THESIS

Presented to the Faculty of the School of EngincerIng

of the Air Force Tnstitutc of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master or Science (Computer Systems)

Anni Kathryn Lee, I1.S

Captain, USAF

D)ecemnber, 1fJ90

A pproved for pl i) ic release; d kstri bii t ni nfin i ed



Acknowledgments

I'd like to thank my advisor, Dr. Thomas Hartrum and my committee members Cap-

tains Robert Hammell and Catherine Lamanna for their advice, insight and encouragement

this past year.

I'd like to thank Carol, Bob, Jason, and Brandon Fitch for making me a part of their

family. I truly appreciate your encouragement and support and I'll nevvi forget the 'quiet'

family dinner discussions. I'm glad we're all a part of the same 'true' family.

I'd like to thank the entire Lee clan for all of their long distance encouragement.

Keeping in touch with the family helped to keep things in perspective. I'd especiall like

to thank my grandmother, Annie Lucas, for her prayers and for her confidence in me.

Most importantly, I'd like to thank God for his steadfast love, his strength, and

the peace he gives which passeth all understanding. Thank you, Lord, for seeing me

through this experience and for all the life lessons you taught me that can't be quantified

or measured.

Ann Kathryn Lee
Acession For

NTIS GRA&I
DTIC TAB I
Un:izounced IJuut 1 i ca.t ion " -

Distribution/
,Aval labili.y Z,;ed

Avil and/or
Dist Special



Table of Contents

Page

Acknowledgments...... ... . ..... .. .. .. .. .. .. .. .. .. .. . .....

Table of Contents...... ... . ..... .. .. .. .. .. .. .. .. .. . . .....

List of Figures. .. .. .. ... ... ... .... ... ... ... ... ... .... vi

List of Tables .. .. ... ... ... ... ... ... ... ... .... ... .... vii

Abstract. .. .. ... ... ... ... ... .... ... ... ... ... ...... viii

1. Introductin . .. .. ... ... ... ... ... ... .... ... ....... 1-1

1.1 Why Distributed Simulation?7 . . . . . . . . . . . . . . . . . . . . . 1-1

1.2 Simulation .. .. .. ... ... ... ... ... .... ....... 1-2

1.2.1 Definition .. .. .. .. ... ... ... ... ........ 1-2

1.2.2 Simulation Classifications. .. .. .. ... ... .......- )

1.3 Issues of Concern. .. .. .. .. ... ... ... ... ........ 1-4

1.3.1 Communications Overhead. .. .. .. .... ....... 1-4

1.3.2 Load Imbalance. .. .. .. .. ... ... ... ...... 1-5

1.3.3 Synchronization Delay .. .. .. .. ... ... ...... 1-5

1.4 Problem Statement. .. .. .. .. ... ... ... ... ...... 1-6

1.5 Scope .. .. .. ... ... ... ... ... ... ... ... .... 1-7

1.6 Outline of Thesis. .. .. .. .. ... ... .... ... ....... 1-7

J1. Issues in Distributed Simulation .. .. .. ... ... .... ... ....... 2-1

2., Iiitrndiititnn ...- 1

2.1.1 Parallel Architectures. .. .. .. ... ... ... .... 2-1

2.1.2 Synchronization. .. .. ... ... ... ... ...... 2-2

iii



Page

2.1.3 Interprocess Communication ..... ............. 2-3

2.1.4 Deadlock ........ ........................ 2-3

2.1.5 Load Balance ............................. 2-4

2.2 Performance Goals ........ ........................ 2-4

2.2.1 Speedup ........ ......................... 2-4

2.2.2 Efficiency ........ ........................ 2-5

2.2.3 Communication vs. Computation ............... 2-6

2.3 Synchronization Algorithms ....... .................. 2-7

2.3.1 An Optimistic Algorithm - Time Warp ........ .... 2-7

2.3.2 A Conservative Algorithm - Chandy-Misra ..... 2-8

2.3.3 A "Spectrum" of Synchronization Protocols ..... 2-11

2.4 Recent Studies ........ .......................... 2-11

2.4.1 Distributed Event List Algorithm .... ........... 2-11

2.4.2 A Hybrid Approach ...... .................. 2-12

2.4.3 Synchronizing on a Per Processor Basis .......... 2-14

2.5 Summary ........ ............................. 2-15

III. Approach and Methodology ........ ......................... 3-1

3.1 Introduction ........ ........................... 3-1

3.2 Motivation for Combining Processes ................... 3-1

3.3 Logical Processes ........ ......................... 3-3

3.4 Distributed Event List Algorithm ..... ............... 3-7

3.5 Synchronization Protocols ...... ................... 3-9

3.5.1 Chandy-Misra Filter-UVA version .............. 3-9

3.5.2 The Event List Filter ..... ................. 3-I 1

3.6 The Simulation Environment ...... .................. 3-15

3.6.1 The Spectrum Testbed ...................... 3-15

3.6.2 The iPSC/2 Hypercube ..................... 3-16

iv



Page

3.6.3 The Simulation .. .. .. .. ... ... ... ... ... 3-19

3.7 Summary .. .. .. ... ... ... ... ... ... ... ..... 3-21

IV. Empirical Analysis .. .. .. ... ... ... ... ... ... ... ...... 4-1

4.1 Introduction .. .. .. .... ... ... ... ... ... ..... 4-1

4.2 Experiment Design. .. .. .. .. ... ... .... ... ..... 4-1

4.3 Results and Analysis .. .. .. .. ... ... ... ... ...... 4-3

4.3.1 Comparison 1. .. .. .. .. ... ... .... ....... 4-5

4.3.2 Comparison 2 .. .. ... ... ... ... ... ..... 4-8

4.3.3 Comparison 3 .. .. .. .. ... ... ... ... ..... 4-12

4.4 Validation. .. .. .. ... ... ... ... ... ... ... ... 4-14

4.5 Problems Encountered .. .. .. .. ... ... ... ... ..... 4-17

4.5.1 Simulation and Filter Connectivity .. .. .. .. ..... 4-18

4.5.2 The DEL Algorithm and Deadlock .. .. .. .. ..... 4-20

4.6 Summary .. .. .. ... ... ... ... ... ... ... ..... 4-24

V. Conclusions. .. .. .. ... ... ... ... ... ... .... ... ..... 5-i

5.1 Overall Performance the Communication Algorithms ..... 5-i

5.2 Topological Effects. .. .. .. ... ... ... ... ... ..... 5-2

5.3 Recommendations for future research. .. .. ... ... ..... 5-3

Bibliography .. .. .. ... ... ... ... .... ... ... ... ... ...... BIB-i

Vita. .. .. .. ... ... ... ... .... ... ... ... ... ... ... .. VITA- I

V



List of Figures

Figure Page

2.1. Mannix submodel ........ .............................. 2-13

3.1. System Decomposition ......... ........................... 3-5

3.2. Four Simple Process Types ........ ......................... 3-6

3.3. Logical Process Composition ........ ........................ 3-6

3.4. Composition of a SPECTRUM LP ....... .................... 3-16

3.5. Mapping Logical Processes to a SPECTRUM LP ..... ............ 3-17

3.6. Four dimensional hypercube and connections .................... 3-19

3.7. The Car Wash ......... ................................ 3-20

4.1. Four process configuration #1 ....... ....................... 4-2

4.2. Four process configuration #2 ....... ....................... 4-3

4.3. Two process configuration #1 ....... ....................... 4-4

4.4. Two process configuration #2 ....... ....................... 4-4

4.5. Filter Comparisons for 8, 4, and 2 node mappings ................. 4-8

4.6. Configuration Comparisons for Chandy-Misra Filter .... .......... 4-12

4.7. Configuration Comparisons for DEL Filter ..................... 4-13

4.8. Topology 2-Car Wash without Feedback ..... ................. 4-14

4.9. Relationship of Processes in Deadlocked System ................. 4-25

vi



List of Tables

Table Page

4.1. Chandy-Misra Filter Run Times ....... ...................... 4-6

4.2. Distributed Event List Filter Run Times ...... ................. 4-6

4.3. Configuration Comparisons for the Chandy-Misra Filter ............. 4-9

4.4. Configuration Comparisons for the Distributed Event List Filter . . .. 4-9

4.5. Chandy-Misra Filter Run Times-Without Feedback .... ........... 4-15

4.6. Distributed Event List Filter Run Times-Without Feedback ....... .... 4-15

vii



AFIT/GCS/ENG/90D-08

Abstract

The primary goal of distributed discrete event simulations is to achie'e speedup in

simulation execution time by distributing th, ,rocessing of the simulation over multiple

processors. When partitioned for distribution in this fashion, simulations are typically

partitioned such .1lj,.t there are molt processes than processors. This thesis reviews existing

methods for distributed discrete event simulations, and proposes general guidelines for

efficient partitionings for a given communications topology based on empirical evidence.

A performance analysis is conducted for two approaches to partitioning the system.

The first method chosen is a mapping of multiple processes to a processor and the second

approach utilizes a distributed event list approach, developed by Mannix. This approach

combines smaller processes into a larger single process, incorporating a next event list

similar to that used in a sequential simulation.

Empirical studies compare the performance of the two approaches under a variety of

conditions. The traditional Chandy-Misra approach to system partitioning is demonstrated

to yield overall better performance than the distributed event list algorithm. General

guidelines for partitioning the system for both approaches are developed based on the

performance comparisons. <O

The impact of system topology on simulation performance is demonstrated. A con-

nection between the system topology and the communication protocol implementation

In Investigated. The distributed event list algorithm Is shown to exhibit a perrormance

anomaly for a system network willh dirdeted cycles, and a correction for the algorithm is

vill
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An Empirical Study of Combining Communicating Processes

in a Parallel Discrete Event Simulation

I. Introduction

1.1 IVhy Distributed Simulation?

Computer simulations are used in various disciplines as learning. training, and anal-

vsis Lools. Traditionally, sinulations have been written sequentially and performed on

sequential processors. However, as simulations havc grown in size and complexity, there

are those simulation models "whose computational requirements cannot be reasonably

sat fied with even the fastest sequential processors" (2-). Size and performance limi-

tations of sequential processors a-e not the only motivation %r the move to distributed

simulations. As hardware technology has advanced, it h;,s changed the dynamics of the

cost/performance criteria which typically made up computer resource acquisition decisions.

offering a broad range of tradeoffs in the way of cost ver- is performance considerations.

The idea of harnessing the processing capability of several "affordable" computer - .ces-

sors a. an alternative to purchasing a high cost high performance processor has been made

feasible by advances in VLSt (very-large-scale-integration) technology, as well as advances

ii, computer architectures. With the advent of parallel architectures and multiprocessor

technology, there has been recent research into the use of parallel architectures for large

simulations, which has led to efforts and interests in parallel, or as they are more commonly

known, distributed simulat*ons.
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The basic goal of distributed simulation is to improve or optimize simulation perfor-

mance, usually with respect to time and efficiency of operation. In many cases, simulation

speed has been the factor of primary importance. Many of the applications for which this

is true include weather modelling, fluid flow models and military simulations. These mod-

els, by the nature of the types of systems they represent, can be extremely complex and

computationally intensive. When run on a sequential processor, these models often require

exceptionally large blocks of 'real' time to simulate a few minutes or seconds of 'simulated'

time. This increase in program execution time is unacceptable, because it limits the use-

fulness of the simulation in providing reasonable and timely feedback to the simulation

analysts. For those applications where a reduction in size or complexity of the simulation

results in a loss of simulation accuracy or realism, this is a problem. Distribuled simulation

provides a means to alleviate this problem.

Theoretically, if a sequential simulation is logically partitioned into separate pro-

cesses, placed on separate processors and run in parallel, the amount of speedup attain-

able should be equal to the number of processors used. As is often the case With theory,

actual implementation does not always yield the theoretical results. Research efforts seek

to answer the questions (1) what are the obstacles to theoretical speedup? and (2) how

can these obstacles be circumvented?

1.2 Simulation

1.2.1 Dcfinition Simulation, as defined by Shannon, is "the process of designing a

model for the purpose either of understanding the behavior of the system or of evaluating

various strategies for the operation of the system" (27). Banks and ('arson describe a
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simulation as the "imitation of the operation of a real-world process or system over time.

Whether done by hand or on a computer, simulation involves the generation of an artif-

ical history of a system, and the observation of that artificial history to draw inferences

concerning the operating characteristics of the real system."(4)

1.2.2 Simulation Classifications The simulation models, according to Pritsker, have

several classifications: discrete, continuous or combined. Di-crete sim'lation occurs when

the dependent variables of the simulation model "change discretely at specified points in

simulated time". Discrete simulations can be further classified as event, activity and pro-

cess oriented simulations, with the differences reflected by the way in which the objects

or entities interact within the simulation model. Continuous simulation occurs when the

dependent variables of the simulation model change continuously over time. Combined

simulation occurs when dependent variables change either discretely, continuously, or a

combination of both (22).

Neelamkavil further classifies simulations into two types, time-driven and event-

driven, derived from the method by which the simulation time is advanced and main-

tained. In time-driven simulations, the clock is advanced from time t by a "uniform fixed

time increment At ". In event-driven simulations, the clock is incremented "from time

t to the next event time i, whatever may be the value of i" (19). The simulation type

receiving the most attention in the literature with respect to ongoing research is discrete

event simulation.
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1.3 Issues of Concern

Many approaches have been described "for coordinating cooperating processes" within

the simulation so that "the outcome of a parallel simulation is the same as would occur in

a more conventional simulation (25) ." Distributed simulation assumes "a mapping from

the physical processes being simulated to the logical processes that represent them in a

simulation" and each of those logical processes must be optimally distributed to one of

the processors of the parallel machine and executed (25). As stated earlier, ideally one

would hope that the addition of n processors to the computational workload would yield

a speedup of n, with each additional processor doing - of the work required. However,

parallel simulations rarely exhibit this kind of performance. This reduction in perfor-

mance can be linked to three main causes: communication overhead, load imbalance and

synchronization delay.

1.3.1 Communications Overhead The communications overhead incurred is the re-

sult of interprocessor communication necessary for logical processes on different processors

to 'talk' to one another. "Communication overhead arises because intermachine com-

munication is significantly slower then intramachine communication" (6). When com-

pared to the sequential case, "any communication constitutes a penalty on the overall

performance"(12). This is obviously due to the fact that a sequential process has no need

to communicate with another process, and the realization that communication takes a

processor's time that could otherwise be spent computing. If the cost of communication

outweighs the benefit gained from partitioning a simulation or a similar process across

several processors, no real speedur can be attained.
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1.3.2 Load Imbalance Load imbalance is the result of improper allocation of logical

processes to processors, such that the computational workload of one processor may be

greater than that of any other processor. The speed of a parallel simulation will be bounded

by the speed of the slowest processor; therefore, it is important to ensure each node has

an equal amount of work to perform(12) . When load imbalance occurs, the uneven

distribution of the workload results in a loss of both efficiency and projected gain in

speedup; this loss is due primarily to processors with lighter workloads lying idle while

there is still processing that needs to be done. Theoretically, those processors could divide

the work remaining, resulting in an increase in both speed and efficiency.

Chu asserts that the load balancing and communication overhead are related issues,

since processes must be allocated to processors not only to optimize the load for each

processor, but also to minimize thp overhead due to interprocessor communication. He

outlines various strategies to balance these conflicting factors.(10)

1.3.3 Synchronization Delay Synchronization delay of local simulation clocks in

discrete event simulations is another major concern in parallel simulation. Time-driven

parallel simulations synchronize their clocks at every time step At. All events are there-

fore simulated in lock-step and no need for synchronization exists. Event-driven parallel

simulations allow the clocks "to run out of synch, only synchronizing . hen necessary

to prevent events from being processed out of order(14)." The primary synchronization

algorithms under study follow either an optimistic or conservative strategy. Optimistic

strategies allow the possibility of events arriving at a process out of order, and typically

require a rollback strategy to correct improperly sequenced messages. Conservative meth-
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ods allow processes to receive event messages in a monotonically increasing order, assuring

no message will arrive from the 'past' to affect events within the process. This usually

requires a process to wait on processing events to assure all event times are increasing.

While the problems of communications overhead, load imbalance and synchronization

delay are not all inclusive as obstacles to optimal speedup, they represent a significant

fraction of the research emphasis in parallel simulations.

1.4 Problem Statement

Chandy and Misra describe a paradigm to decompose a simulation to run in a parallel

environment. This consists of partitioning the physical system and defining a discrete set of

physical processes which communicate with one another exclusively via messages, and there

is a logical process which corresponds to to every physical process. This mapping implies

that every physical process is composed of the smallest and simplest discrete component

possible in the physical system. Depending on the system being modelled, this implies

the level of computation inherent to the physical process may be small in comparison to

the level of communications for each logical process. Assuming that this is the case, one

would suspect that any gain realized through parallelization could be lost due to excessive

communication overhead. This has been documented in various implementations utilizing

the Chandy-Misra null message strategy. (23)(24).

Mannix maintained that a system of N physical processes can be simulated by con-

structing a system of M logical processes, M < N, where each logical process simulates a

disjoint set of one or more physical processes. He then utilized an event list, a classical data

structure in event driven simulations, to maintain the proper sequential order of events
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within the simulation. Mannix demonstrated that this distributed event list, in conjunc-

tion with the null messages synchronization of logical processes, would yield significant

speedup in some cases(17).

The goal of this thesis is to show using empirical evidence that partitioning a phys-

ical system is a matter of granularity, and the level of granularity, in conjunction with

the communications topology of the system being modelled, plays a key role in simulation

performance. In particular, this thesis explores the correlation between the communica-

tions topology of the physical system and simulation performance. The effect of different

partitionings of the physical system into logical processes on both program implementation

and simulation performance is examined.

1.5 Scope

This thesis effort will consist of empirical studies performed on discrete event sim-

ulations and conservative synchronization protocols. The Chandy-Misra null messages

protocol(7) will be used. The effects of communications topology and its variations due to

changes in granularity on simulation performance will be explored. All empirical studies

will be performed on hardware implementing a distributed memory architecture.

1.6 Outline of Thesis

Chapter 1 will serve as an introduction and background. Chapter 2 contains a review

of current literature. Chapter 3 will discuss the approach, methodology, algorithms, and

cover design implementation of ,he experiments utilized in the research effort. Chapter
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4 will be an analysis of experimental results and Chapte: 5 will include conclusions and

recommendations.
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II. Issues in Distributed Simulation

2.1 Introduction

A discussion of parallel simulation requires an understanding of the major issues and

terminology. This section outlines some of the issues involved in parallel programming in

general, with emphasis placed on those issues central to parallel simulation.

2.1.1 Parallel Architectures Due to technological advances in general, and VLSI

technology in particular, parallel computers exhibit architectures as varied as the types of

applications that are available. Bertsekas and Tsitsiklis cite several parameters that can

be used to describe or classify a parallel computer(5)

* Type and number of processors

" Presence or absence of global control

" Synchronous vs. asynchronous operation

" Processor interconnection network

" Shared vs. local memory

The architectures of primary interest in parallel simulation are the SIMD (single

instruction multiple data) and MIMD (multiple instruction multiple data) architectures.

A SIMD machine is a processor structure which utilizes a single program to manipulate

vectors or arrays of data(28). Applications which require repetitive operations on large

amounts of similar data map well to this architecture.

2-1



MIMD machines are composed of several independent processors, each capable of

executing its own program (28). Parallel simulations generally map most easily to this

architecture, with each processor executing a portion of the simulation, communicating

with other processors as necessary.

Applications, when decomposed for parallelization, can be mapped into a specific

architecture based on the flow of program control, data decomposition, and the program

algorithm. Chandy and Misra describe general heuristics and definitions for mapping

programs to various architectures and schemas as early as the program design phase(9).

2.1.2 Synchronization In a distributed discrete cvent simulation, each process has

its own local clock and local memory. The clock and local data variables are updated on

a per process basis. It is necessary to coordinate the interaction and activities of different

processes to ensure that the algorithm or simulation is executed in such a manner as

to ensure the proper sequencing of actions. Synchronization consists of controlling the

evolution of processes and therefore the occurrence of events(2). Synchronization is not an

issue for a sequential application, because the order or sequence of events or activities is

based on the order of program execution. In a system where each process is represented

by a series of events, logical synchronization is defined to be the establishment of a form

of agreement between processes which have arrived at a given event(2). Processes will be

synchronized based on the synchronization protocol in use. These protocols generally fall

into one of two categories: optimistic or conservative. Protocols from both categories will

be discussed further in Section 2.3.
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2.1.3 Interprocess Communication Interprocess communication in parallel program-

ming arises from the necessity of exchanging control and data information between pro-

cesses. The hardware method of communication will generally be determined by the ar-

chitecture of the system being used. In parallel algorithms and systems, "interprocessor

communication is a sizable fraction of the total time needed to solve a problem"(5). A

communication delay or communication penalty is the result. Bertsekas and Tsitsiklis

define the communication penalty as the ratio

CP Ttotal

where Ttot,, is the time required to solve the problem and Tcomp is the time attibuted just

to computation given that all communications were instantaneous. The most important

factors influencing communication delays are(5):

" The algorithms used to control the communication network

" The communication network topology

" The structure of the problem solved and the design of the algorithm to match this

structure, including the degree of synchronization required by the algorithm.

2.1.4 Deadlock A system of processes is said to be deadlocked if there is at least

one process waiting for an event that will not occur. When deadlock occurs in distributed

simulations, the simulation cannot advance in simulated time order. Deadlock usually

occurs as a result of message traffic between processes, where one or more processes will wait

for a message not forthcoming from another process. A cycle of waiting processes results,

2-3



and the simulation remains deadlocked unless some outside element intervenes. Parallel

discrete event simulations depend on the synchronization protocol to resolve deadlock.

2.1.5 Load Balance Load balance is the idea of equally distributing the computa-

tional workload of the parallel program among processors for maximum throughput and

efficiency. Any processors which become idle during program execution results in a loss of

efficiency due to low processor utilization. Load balancing can be static, performed prior

to program execution or dynamic, performed throughout program execution. Dynamic

load balancing will cause additional overhead for program execution, because any time the

processor spends performing the load balance is time that could be spent processing. For

the simulation to remain efficient, the gain in balancing the load should outweigh any loss

of processing time, with the net result of a faster, more efficient simulation.

2.2 Performance Goals

2.2.1 Speedup Speedup is the primary goal of distributed discrete event simulations.

Stone defines speedup as "the ratio of time to execute an efficient serial program for

a calculation to the time to execute a parallel program for the same calculation on N

processors identical to the serial processor"(28). That definition maps into the following

formula:

Sedu Best serial time

peedup Parallel program time

where the numerator is the running time of the most efficient serial program, and the

denominator is the running time of the parallel program under study which maps to the

serial program(28). One has to tread carefully when making claims of speedup to be certain
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that the benchmark being used is both accurate and understood so that useful conclusions

can be drawn from the measurement. Different programs will exhibit different speedup

curves, and this is generally a function of the inherent parallelism of the problem and how

effectively that parallelism has been utilized in the parallel program.

The ideal or theoretical speedup thought attainable is n, where n is the number

of processors used for the parallel computation. Speedup greater than n is defined as

superlinear speedup. Superlinear speedup is rare, but has been documented in certain

cases(17). Most speedup curves usually exhibit a degraded linear slope, with an initial

linear slope that gradually falls as the number of processors increases. This is due o

the fact that the compute time for a program can be divided into parallel and serial

portions. No matter what the degree of parallelism that exists in a program. speedup

will be asymptotically limited by that portion of the program which must be executed

serially(l). As processors are added to work on the parallel portion of the program, the

amount of work performed by each processor becomes increasingly insignificant.

2.2.2 Efficiency Efficiency is a program parameter. It is the measure of the propor-

tion of time that processors are busy, and therefore it measures the impact of parallelization

overhead on peak or ideal performance(28). Fox et. al. related efficiency to speedup by

the following equation:

Speedup
Efficiency =Number of processors

and stated efficiency would be bounded above by one or more of four causes( 12):
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" Nonoptimal algorithm or algorithmic ov2rhead the parallel version of the algorithm

in question may be inherently deficient.

" Software overhead - parallel implementations may require additional calculations

unnecessary to the serial implementation.

" Load balancing - speedup is generally limited to the speed of the slowest processor,

therefore ideally each node should perform the same amount of work.

" Communication overhead - as noted above, any communication in a distributed pro-

gram constitutes a penalty in overall performance when compared to the sequential

case.

2.2.3 Communication vs. Computation Stone asserts that "performance oi parallel

programs is strongly dependent on the ratio R, where R is the length of a run-time quantum

and C is the length of communciadion overhead produced by that quantum"(28). A low

ratio implies poor performance due to a high communications overhead, while a high ratio

implies the maximum level of potential parallelism may not be fully exploited. The ratio

C is then a measure ot task granularity, with a low ratio corresponding to a fine grain

parallelism and a high ratio corresponding to a coarse grain parallelism(?8). For a fast,

efficient simulatioa, a balance must 'be found in partitioning the simulation in a nanaer

which fully exploits any inherent parallelism, while keeping the roriniunication overhead

to a minimum. This is the challenge of distributed simulation research.
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2.3 Synchronization Algorithms

2.3.1 An Optimistic Algorithm - Time Warp Optimistic synchronization protocols

allows processes to continuously execute events in the order in which they are receivx'd.

If a Drocess receives ar, event froai the "past", the process will roll back its simulation

time to the time he event should have ocrured. Once this has been accomplished, the

process continues its processing from the adjusted simulation time. One such algorithm is

the Time-Warp algorithm proposed by Jefferson(16).

The time warp algorithm is based on the paradigm of virtual time, "a global, one-

dimensional, temporal coordinate system imposed on a dist~ibuted computation", which

measures computational progress, defines synchronization and may or may rot relate to

real time(16). Processes in the distributed system communicate with each other strictly

through message passing. The processes are effectively fully connected, possessing the

ability to send message. to any other processor, including itself, without an established

link or channel. Jefferson imposes two fundamental sematic rules on the systE--n:

" Rule 1. The virtual send time of each message must be less than its virtual receive
time.

" Rule 2. The virtual time of each event in a process must be less than the virtual
time of the next event at that process.

Jefferson also places an implementation constraint on the system:

" If an event A cause- cvent B, then the execution of A and B minst be scheduled in

real time so that A is completed before B starts.(16)
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Each process has its own local virtual clock, which "changes only between events and

then only to the value in the timestamp of the next message from the input queue"(16).

Each process has an input queue, where incoming messages are stored in the order of

their virtual receive time and the messages are processed, causing the process to execute

continuously until a message is received from the "ast". Once a message from the past

is received, the process will "rollback" to the last stored time previous to the message

which caused the rollback, and establish a process state suitable to that point in time.

This will effectively undo any events local to the process. Antimessages are sent out for all

event messages executed prior to receiving the message from the past. The antimessages

provide the ripple effect necessary to bring each individual process back to a state where

all processes can safely simulate again. The system state is kept logically intact by the

concept of global virtual timc, defined as follows:

* Definition: Global virtual time at real time r is the minimum of (1) all virtual times

in all virtual clocks at time r, and (2) of the virtual send times of all messages that

have been sent but have not yet been processed at time r.

Performance studies conducted using time warp(31) have demonstrated that signif-

icant speedup can be obtained for distributed simulations. The simulations under study

have been combat simulations, which have exhibited irregularities in simulation algorithms,

simulation time and object interactions. In spite of these irregularities, the model has per-

formed well. Research continues in finding ways to optimize and improve performance.

2.3.2 A Conservative Algorithm - Chandy-Misra Conservative synchronization pro-

tocols wait until incoming events from other processes are received before they proceed with
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their program execution. The protocol assures the time order of incoming events so that

no events can be received from the past. The waiting imposed by this paradigm may lead

to deadlock in simulations. Research in conservative synchronization protocols tends to

focus on the Chandy-Misra algorithm and its variants(8)(18).

The Chandy-Misra algorithm(8) is a distributed algorithm to facilitate program syn-

chronization between processes for a distributed simulation. The algorithm assumes the

physical system can be decomposed into physical processes (PP) which communicate with

each other exclusively through messages. Each process in the physical system is modelled

in the simulation by a logical process (LP), which is totally indepedent in its execution

from the rest of the system(8). Operation of the LPs can be described in two phases:

computing and communicating. When an LP is not computing, it is communicating or

waiting to communicate.

Communication between logical processes is modelled after the time-stamped mes-

sages passed between physical processes in the physical system. Behavior of the messages

received by a physical process is restricted by the following:

9 a message arriving at time t cannot be affected by messages transmitted after time t

* a message sent to another PP at time t is dependent only on the internal processing

of the physical process and all messages received up to time t

The paradigm restricts its attention to those physical systems displaying these properties,

with the additional caveat that all physical processes possess an associated delay. e > 0

between sequential message transmissions. This delay e is the service or processing time
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associated with the physical process. All messages arriving at a process at time t are

assumed not to produce an output from that process before time t + e.

Deadlock in the logical system is resolved in one of two ways: deadlock avoidance

using null messages or deadlock detection and recovery. In the first scheme, null or no-

event messages are transmitted from LPi to a communicating LPj to inform LP that the

logical time i has been updated. If LPj has been waiting to receive a message from LP,

the receipt of the null message will allow LPj to update its logical clock and advance in

simulated time. The deadlock detection/recovery algorithm allows the simulation to run in

phases where it deadlocks, the deadlock is detected and a computation is initiated which

allows LPs to advance their simulation clocks. The simulation continues until another

deadlock phase occurs.

Contrasting the two approaches, the null message protocol enforces synchronization

without the overhead of calculating deadlock and recovery, but with a significant commu-

nication penalty for additional null messages. The detection/recovery algorithm, although

it avoids null messages, does so by diverting computational resources to the detection

and recovery of deadlock. "Performan.-e advantages depend on the relative costs of syn-

chronization and message passing(24)." Reed condu(ted performance studies on a shared

memory machine using simulated queueing systems. He reported that both algorithms

exhibited poor performance for simulated queueing systems, and recommended it was not

a viable approach for queueing applications(24). Fujimoto conducted performance studies

using a distributed simulation testbed and a BBN butterfly shared memory machine. The

simulation under study was a queueing network, and the parameters of the study included

network topology and routing probabilities. Fujimoto reported positive results for both
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algorithms for most of the cases studied. He asserted that the amount of speedup attained

depended heavily on the message populations and a calculated lookahead value, which is

derived from the associated delay E > 0(13).

2.3.3 A "Spectrum" of Synchronization Protocols Reynolds, after conducting sev-

eral simulation experiments utilizing various synchronization protocols, asserted that there

existed a "spectrum" of options for discrete event synchronization protocols, not merely

the strict demarcation of optimistic and conservative protocols(21)(25). In addition, given

this spectrum of options and a diversity of applications, there are an infinite variety of

application and protocol pairings. He proposed to identify classes of protocols and classes

of applications, and suggested that there existed bindings between classes that would lead

to heuristics for choosing optimal protocols for a given application(21)(25). A simulation

testbed, SPECTRUM(25), was developed to examine various simulations in combination

with differing protocols in a common framework to make useful comparisons regarding

simulation performance(21). The experiments also led to the development of a set of

application(21) and protocol(25) characteristics and the suggestion that there is a depen-

dence between applications and protocols that can be exploited for faster, more efficient

simulation performance.

2.4 Recent Studies

2.4.1 Distributed Event List Algorithm Mannix developed an algorithm, the dis-

tributed event list algorithm(17), which utilized a classical event list structure within each

logical process. The paradigm assumes a mapping of n physical processes to m processors,
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n > m. Physical processes are mapped to logical processes such that each logical process

contains one or more physical processes. The event list is used to enforce chronological

ordering of events within each logical process. The Chandy-Misra null message protocol is

used to enforce synchronization between logical processes.

Based on the performance analysis for the algorithm, "the implementation is shown to

be of superlinear time complexity in relation to the events simulated. This implies theoret-

ical speedup greater than N for a distributed simulation over N processors, contradicting

the commonly held view of the existence of a bound of N on attainable speedup(17)".

Mannix performed empirical studies for the algorithm for queueing simulations un-

der various conditions. He constructed a submodel (see Figure 2.1) which he connected

in various topologies to form a complex queueing system. He demonstrated for certain

topologies speedup greater than N was verified, and asserted that the topology of the

simulation contributed directly to performance. Variations of the null messages protocol

indicated that for tandem and feedforward topologies, a certain level of nulls was beneficial

to simulation performance(11)(17).

2.4.2 A Hybrid Approach The idea of combining physical processes into larger log-

ical processes was also proposed by Su(29). He tested the hypothesis by constructing

a hybrid simulator (hybrid-i), consisting of several macroelements or multiple physical

processes and utilized an event list to form a sequential simulator. The simulators were

synchronized using a Chandy-Misra-Bryant variant protocol(29). The algorithm processes

the event list in each sequential simulator subject to a "temporal marker" which indicates

the smallest time for the arrival of an external event. The marker ensures no events are
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Figure 2.1. Mannix submodel

processed prior to a new arrival message from another macroelement(29).

Su performed an extensive study investigating the performance of logic simulations

and variants of the Chandy-Misra-Bryant algorithms, which included a lazy message send-

ing protocol, a demand driven operation with backward demand messages, as well as adap-

tive adjustment of lazy message sending parameters. The experiments were conducted in

a programming environment Caltech developed for multicomputers, the Cosmic Environ-

ment and the Reactive Kernal(26)(29). Generally, simulation performance for a variety of

logic networks utilizing the variants was very good, and a great deal of performance simi-

larity was exhibited between the variants. The simulations exhibited near linear speedup

in N initially, with an asymptotic drop as N increased and the available concurrency of

the system was exhausted (30).

Contrasting the performance of the hybrid simulator to the previous results, Su

asserted the hybrid simulator exhibited good speedup over all the variants in general. He

also noted that if the elements were not properly distributed within a macroelement, th
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simulation time increased initially, before starting to decrease(30). It should be noted

that the hybrid performance, while excellent overall, typically gave a comparatively poorer

performance to the totally distributed algorithm.

2.4.3 Synchronizing on a Per Processor Basis Another approach on the same level

of the hybrid paradigm and the distributed event list algorithm is that proposed by Bain(3).

He proposed synchronization on a per processor basis, where n processes are distributed

on m processors, n > m and the synchronization was accomplished by using multiple

synchronized event schedulers, one for each processing node of the system(3). All processes

on the same node share the same event scheduler, consisting of a logical clock and a time-

ordered queue of pending events. The event schedulers are in turn synchronized in a

conservative manner, and no scheduler is allowed to advance until it is positive no process

will receive an event from the past(3).

The event schedulers are fully connected and synchronized to the same global system

time using multiple distributed spanning trees to collect and distribute clock times. The

zavantage of the full connectivity allows any process to communication with arbitrarily

any other process, simplifying the partitioning of processes to processors. The algorithm

exhibits a performance of O(D), where D is the diameter of system. On the Intel iPSC/2,

the machine on which the experiments were conducted, this translates to

D = log2N

The one disadvantage of the algorithm is having to guard against race conditions that are

possible in the implementation. The probability of encountering the race condition is a
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function of the communication patterns exhibited by the process interconnections, !oad

balance, and system delays(3).

2.5 Summary

Speedup and efficiency are critical performance factors in evaluating a discrete event

simulation. The potential speedup in a discrete event simulation will be determined by

many factors: the level of inherent parallelism of the program, the synchronization protocol

in use, interprocess communication, load balance, and the communications to computation

ratio. Research efforts using conservative synchronization protocols have sought to increase

simulation performance by increasing the level of computation in processes and decreasing

the communication between processes for more efficient simulations. Effectively balancing

the communications to computation ratio has resulted in a significant level of simulation

performance speedup.
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III. Approach and Methodology

3.1 Introduction

This chapter details the motivation and approach used for the empirical studies. It

defines a logical process, discusses the algorithms and simulations implemented and gives

an overview of the SPECTRUM environment.

When decomposing a physical system into a logical system of communicating pro-

cesses, the objective is a resulting system that is well-balanced, having an efficient ratio of

communications to computation resulting in increased performance. Finding that balance

and simultaneously exploiting the inherent parallelism resident in the system is the objec-

tive of discrete event simulations, with the goal of obtaining a high level of concurrency

for greater speedup.

3.2 Motivation for Combining Processes

In general, Chandy and Misra describe a paradigm where a physical system is "par-

titioned into physical processes (PPs) that communicate with one another exclusively via

messages" and there is a "logical process (LP) corresponding to every PP"(7). This implies

a "fine grain" partitioning of the physical system to a logical system of communicating log-

ical processes. This is ideal for many applications using the Chandy-Misra protocol. For

many discrete event simulations, it is often the case that there are more processes than

processors available. Proicou(23) decomposed a VHDL application into numerous physical

processes, partitioning his problem so that each VHDL process within the simulation was

modelled as a separate logical process. Multiple logical processes were then mapped to a
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single processor node. In general, the simulations performed poorly, exhibiting 1:1 speedup

with eight processors. Proicou asserted the poor performance of the simulations was the

result of a lack of significant computation for each process, which was further inhibited by

excessive null messages sent between processes residing on the same node. Later exper-

iments with the simulation revealed that the poor performance was also attributable to

excessive disk I/O. With that communication factor removed, the simulation exhibited a

speedup factor of approximately 3:1.

Proicou suggested that a "coarse-grain" mapping of the physical system to a model

where the LPs modelled multiple PPs would have improved simulation performance. He

suggested that simulation performance would be enhanced by utilizing the distributed

event list algorithm developed by Mannix for all processes which were mapped to a single

processor node. Mannix maintained that a "system of N PPs can be simulated by con-

structing a system of M logical process with M < N, where each LP simulates a disjoint

set of one or more PPs". Once the physical system has been partitioned in this way, each

LP "simulates events of its sub-model ... using an event list data structure and associated

operations similar to those used in a sequential simulation"(17). Mannix asserted that

this distributed event list, in conjunction with the null messages synchronization protocol,

yielded speedups in some instances greater than N(17). Utilizing this paradigm in Proicou's

experiment, this mapping would conceivably absorb the communications between processes

on the same node, making intraprocessor communication unnecessary.

The distributed event list algorithm holds promise for those applications that need

to map n processes to m processors, n > m, where the processes typically exhibit small

computational loads. A portion of the communications overhead will be reduced due to the
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elimination of communication channels, especially between those processes residing on the

same processing node. In addition, the aggregation of physical processes can potentially

result in increased computation for the logical process, but this is dependent on the topol-

ogy displayed by the combined logical process. This boost in computation combined with

a drop in communications overhead theoretically results in increased performance. While

the introduction of the event list to a logical process may potentially increase performance,

a factor that must be considered is that it may also remove some the inherent parallellism

achieved by the original partitioning of the system into simple processes. Given the initial

results, this does not seem to pose a significant problem, provided a suitable partitioning

of physical processes can be found.

3.3 Logical Processes

In the Chandy and Misra paradigm, each physical process in the system is mapped

directly to a corresponding logical process in the simulation. This mapping implies that

every PP is the smallest and simplest discrete component possible in the physical system.

Depending on the system being modelled, this implies that the level of computation inher-

ent in the resulting logical process may be very small in comparison to the communications.

Assuming that this is the case, one would suspect that very little, if any, speedup would

be realized within a parallel implementation due to communication overhead, particularly

if the communications topology of the system dictates excessive communications between

physical processes. If a more coarse grain partitioning of the physical system is to be

realized in the context of the Chandy-Misra paradigm, it is necessary to redefine what was

implied in the term logical process, and its relation to the physical system being modelled.
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The smallest component within a physical system which can be logically modelled

will be defined as a physical process. A physical process is the smallest viable computational

unit which can potentially be mapped to a logical process. A simple process is the logical

model of a physical process. A simple process maps directly to the Chandy-Misra definition

of a logical process. A logical process can now be defined as a collection of one or more

simple processes. The implication is that the LP consists of multiple smaller processes. The

physical system to be modelled can now be decomposed into physical processes, mapped

logically to simple processes, which are then modelled by logical processes in a discrete

event simulation. This decomposition is summarized in Figure 3.1.

The following terms will be used throughout this document using the definitions

given below:

" Physical System - the system or network being modelled

" Physical Process - the smallest component of the physical system that can be
modelled as one of four general types of server processes: a router, a merge, a sink
and a source (see Figure 3.2). Implicit to each simple process is the server queue,
where the queueing discipline is application defined. In most cases, some processing
or service delay is also implied.

" Simple Process - Logical representation of a physical process in the simulation.

" Logical Process - A collection of one or more simple processes within the logical
system which performs an autonomous function. (see Figure 3.3 ).

The mapping of physical processes to a logical process is illustrated in Figure 3.3.

This "fine-grain" to "coarse-grain" partitioning of the system is significant in that it

determines both the communications topology and the level of computation for the logical

system. While it may not be immediately obvious, the topology of the logical system of

prcesses has a significant impact on simulation performance. It is the hypothesis of this
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thesis that the level of granularity in partitioning the simulation plays a key role in discrete

event simulation performance.

3.4 Distributed Event List Algorithm

The distributed event list algorithm was designed by Mannix (17) with the idea that

a system would be decomposed into n simple processes and mapped to m processor nodes,

n > in. To reduce the communicp.tion overhead of interprocess communication between

processes on the same node, simple processes can be combined with an event list and

mapped to a single logical process, with i logical processes now mapped to m processor

nodes, i > m, with i = m as the ideal case.

Communication within the logicai process so formed is accomplished as each sim-

ple process inserts event messages into the next event queue. Events are processed in

time order as they reach the top of the list. No event is processed with a time greater

than the simulation clock (Ip-clock), including departing messages. A departure with time

Lout > lp-clock is scheduled on the next event queue. The logical process advances its

lp-clock to the time of the event popped off the list. This, coupled with the conservative

synchronization between logical processes, ensures the proper progression of the simulation.

Correct simulation of the system is not guaranteed solely by the processing of the

next event queue. An event may arrive at the logical process with an event time t which is

less than the time of the next event on the queue. To ensure the correct ordering of events,

within the logical process, it is necessary that LPs not process any event message on the

next event queue until it is certain that no event \"ill be received from a communicating

LP which has a smaller time stamp. To accomplish this, t-safe, a lower bound estimate on
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the time of the next message arrival, is maintained. Events on the next event queue will be

processed until the time of the next event exceeds Lsafe. The value of Lsafe is calculated

by the protocol filter as described in Section 3.5.2.

The basic algorithm for the LP is as follows:

begin

Initialize
lp-clock, t-safe, tneq = 0;
Schedule any initial events

while simulation not terminated loop

Read Phase - Performs read until t-safe is updated
while (t-safe < lp-clock)

Read and process incoming messages; update t-safe
end while;

Event Phase - Simulate all events up to t-safe
while ((tneq < tsafe) AND (next-event-queue != EMPTY))

next-event = pop(next-event-queue);
lp-clock = next-event - time;
Simulate next event

departure-consume event-enqueue new event
end while;

If no event is scheduled in interval (lp-clock,t-safe), advance lp-clock
if (t-safe > lp-clock)

advance lp-clock to t-safe;
end if;

end while

end

All synchronization between LPs is the responsibility of the synchronization protocol

implemented. The details of the communications protocol are discussed in the Section 3.5.
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3.5 Synchronization Protocols

The synchronization of logical processes in a discrete simulation is handled through

synchronization protocols. Chapter 2 discussed the two more typical approaches to syn-

chronization, conservative and optimistic. The protocol being used here is the Chandy-

Misra deadlock avoidance strategy, which utilizes null messages between processes to prop-

erly synchronize processes and avoid deadlock. The Chandy-Misra algorithm assumes that

all messages received by an LP are monotonically increasing, having a time greater than

or equal to the current LP time. Logical processes which communicate with each other

establish a communication line or channel, and each communication line has an associated

clock value. For two processes LP and LPj, the clock value i is a lower bound on the

next outgoing message from LP and a clock value j is the last message received by LPj

over a communication line (ij)(7). The synchronization protocol is responsible solely for

the communications between processes. Theoretically, the protocol should be able to dis-

regard the composition of the logical processes. However, in the actual implementation,

the composition of the logical process may dictate some differences in the operation of the

protocol. Two approaches were taken in th,- implementation of the protocol due to this

phenomenon.

3.5.1 Chandy-Misra Filter- UVA version This implementation of the Chandy-Misra

algorithm was supplied with the SPECTRUM testbed (see Section 3.6 for more information

about SPECTRIUM). The implementation is a simplification of the original Chandy-Misra

algorithm. The notion of input and output channels and channel clocks is implicit, and not

explicitly featured in the implementation. Another assumption made in the implementa-
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tion is that each logical process is presumed to be a single server queue that experiences no

waiting. The reading or waiting on input channels is as outlined in the following algorithm:

begin

while (event message not received)
Receive all pending messages.

If a message has not been
received from each input LP,

block until message is received.
Prioritize received messages by message time

If message is a null message
if event-time > lp-clock

advance lp-clock to event-time
if lp-clock has been advanced

send a null message to all output LPs
at time event-time + delay

else if event-time + delay > lp-clock (New time information for LP)
send a null message to all output LPs
at time eventAime + delay

Else message is an event message
return event message to LP

end while

end

Event messages are sent or posted from within the logical process whenever a message

is to be sent to another process. Null messages are sent

1. To all other communicating processes when an event message is sent out on one arc.
The null message will carry the same time stamp as the event message.

2. When an LP receives a null message with new timing information (time = t), it sends
out a null message at time t + delay.
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The first condition ensures that when a message is sent to one logical process, the

time of the event will be passed to all other logical processes. This information allows all

communicating LPs to update their logical clocks without waiting, since the logical process

will be unable to send another message at that time. The second condition performs the

same function of informing a communicating LP that no messages will be forthcoming

before the the stated time. The delay can be added to the original time of the null

message because a delay of e > 0 for each process is assumed, and any message arriving at

the LP at time t is not expected to depart until time t + E; therefore, the communicating

logical process should not expect a message before that time.

3.5.2 The Event List Filter The addition of an event list to the logical process

changed the basic assumptions presumed by the Chandy-Misra version developed by UVA,

creating an incompatibility between the application and the filter. Instead of a single server

queue with no waiting, the logical process consisted of one or more simple processes and

an event list. In addition, the distributed event list algorithm (see Section 3.4) for the

logical process incorporated the synchronization of the process as an integral part of the

algorithm by not advancing the simulation clock past t-safe, which is calculated by the

filter. Thus the event list filter has two primary functions: to calculate and update Ltsafe,

preventing incorrect simulations; and to send null messages, preventing deadlock. This

implementation conforms more closely to the original Chandy-Misra paradigm, explicitly

implementing the concept of input and output channels for each logical process, and in-

corporating the notion of channel times.

The filter ensures correct simulation by updating the variable Lsafe which is used
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to coordinate the processing of the next event queue and incoming messages. The filter

updates the variable t-safe by reading the channel times of all input channels and taking

the minimum value. This ensures that tsafe will have a minimum value such that no

message will arrive from the past and no event on the next event queue will occur before

an outside event arrives.

At any given point in the simulation, a logical process might read an unpredictable

number of messages from a communicating LP. A constraint is placed on the number of

messages a process is allowed to read to constrain the growth of the event list for that LP as

well as limit the size of the input message buffer for that LP. The constraint is accomplished

by allowing the LP to read and receive messages on those input channels with a channel

time equal to the current t-safe value. The result is that the LP will check only those

channels whose channel times established the lower bound for incoming messages during

the previous read phase. An LP will read messages from input channels according to the

following algorithm:

begin

For all input channels
while a message is pending and next-in = t-safe

Read message on channel
next-in = I
If the message is not a null message

Insert message into event list
end if

end while
end for

end
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To ensure that deadlock is successfully avoided as proposed by the Chandy-Misra

paradigm, Mannix outlines two null message conditions that must hold in the simulation:

1. For every logical process in the the logical system, once an LP exits a read phase of
the distributed event list algorithm, that LP will send at least one message, either
event or null over every output channel before entering another read phase.

2. If an LP sends an event message over a specified message channel (ij), the LP must
send a message, event or null, over every other output channel before sending another
message over channel (i j).

The first condition proposes to send null messages in conjunction with the receipt of

messages, null or real. To meet the first condition, null messages are generated prior to

updating t-safe. Null messages will be generated after each event phase in the distributed

event list algorithm according to the following algorithm:

begin

For all output channels which did not send
a message during the last event phase

Compute lower bound for next departure
If the lower bound > last-out

Send a null message on this output channel
last-out = calculated lower bound

end if
end for

end

To meet the second condition, for any outbound message which is the result of an

event departure on one channel, the filter will send a null message on all other output

channels, to inform the communicating LPs of the latest departure and time. Although

the current value of lpclock provides a lower bound on the time of the next message to be
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transmitted over any outgoing channel of a logical process, the filter utilizes the channel

times and a message prediction function to calculate a greater lower bound to allow the

following LPs to advance their time as far as possible.

Calculation of this greater lower bound considers two possibilities. In the first case,

an event on the next event queue may prompt a departure from the LP over an output

channel. A lower bound for this possibility is the time of the next event on the event list,

even though a departure event may be further down the list. In the second case, an event

message departure may be prompted by some message which has not yet been received by

the logical process. A lower bound on this possibility is the current time for the logical

process added to the delay of the logical process or lp-clock + c. The delay for an aggregate

logical process will be the minimum of all the simple process delays. Because each physical

process in the system is assumed to have a delay Ei > 0, each simple process will have a

positive delay. Therefore, any minimum defined on this set of delays will be greater than 0.

The calculated value lp-clock + E is a minimum time for departures as a result of incoming

messages because of the property of monotonicity, which implies the time stamp for all

incoming messages is monotonically increasing. Given that all processes within the logical

system exhibit a delay greater than 0, no message arriving at time t will depart prior to

time t + e. This implies that a lower bound on the next departure over any output channel

will be calculated by

min(lp.lock + delay, Lneq)

Note that this requires that Lneq, or the time of the next event, be visible to the filter.

Describing a message channel (ij) for communicating logical processes LP and LPj,
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for each message transmitted over channel (ij), LPi calculates the lower bound for the

next output message as outlined above and appends this time estimate to the message.

All messages sent between LP and LPj are of the form [t, m], where t is the lower bound

estimate and m is the message, null or event, transmitted by LPi. Note that t is distinct

from the timestamp tmsg of the event message, which is included in m. For every output

channel of LPi, channel i is assigned the time t, designated last-out for any outgoing

transmission. This same time t can be associated with the corresponding input channel j

for LPj when that logical process performs a read and is designated next-in. The value

tLsafe defined earlier for LPj is min(next-inij)Vi.

3.6 The Simulation Environment

3.6.1 The Spectrum Testbed SPECTRUM is a testbed developed at the Univer-

sity of Virginia to study simulation algorithms in a common environment. SPECTRUM

consists of three programming layers: the process manager, the node manager, and a filter.

The process manager provides a user interface to the application program. This

includes functions for local clock advance, event management, and program initialization.

The node manager is a set of functions responsible for machine level memory management

and communications. The functions are machine dependent, providing SPECTRUM with

portability to different machines without changing the simulation. The filter consists of

a set of functions which implements the simulations communications protocol. These

routines are called by the process manager and the node manager when communication is

necessary between logical processes.
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The user supplies an application program which contains the simulation. The sim-

ulation is decomposed to application components, where each component corresponds to

either a simple process or set of simple processes. The application component commu-

nicates with the process manager and filter through a combination of passed function

parameters, function return values, and global variables. The application component, the

process manager, and the node manger routines are combined to form a SPECTRUM log-

ical process (see Figure 3.4) which is loaded on its respective node and executed. Logical

processes are mapped to a SPECTRUM logical process as illustrated in Figure 3.5.

3.6.2 The iPSC/2 Hypercube The iPSC/2 Hypercube is a distributed memory ar-

chitecture system. It consists of a front end processor and up to 128 nodes. Each node on

the hypercube has the following features:
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Message Size Time (msec)
(bytes) process-to-process node-to-node
0 0.332 0.353
65536 11.134 24.272

* 1, 4, 8, 12, or 16 megabytes of memory

* an 80387 numeric coprocessor (there are different options for high speed floating
point arithmetic and vector processing

* a Direct Connect Module (DCM)

The DCM provides all of the nodes with direct message passing capability. "With

DCM you can view the iPSC/2 system as an ensemble of fully connected nodes with uniform

message latency(15)". Communication times between nodes are essentially uniform, even if

the two nodes are two or more "hops" distant from each other. Through experimentation,

it has been determined that the message timing between processes on the same node is

virtually the same as the timing between processes on different nodes for small messages.

For large messages (64K bytes) the time it takes to transmit a message between processes

on different nodes is approximately double the time it takes to transmit a messages between

processes on the same node (see Table 3.6.2).

The hypercube topology is designed so that nodes in the cube are connected by bi-

directional links. A cube will contain 2 d nodes, where d gives the dimension of the cube,

and each cube will be connected to d neighbors. Figure 3.6 illustrates a four dimensional

(16 node) cube and its connections.

The AFIT iPSC/2 hypercube configuration is F, three dimension (8 node) hypercube,

with 12 megabytes of memory per node.
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Figure 3.6. Four dimensional hypercube and connections

3.6.3 The Simulation The simulation used is a car wash, which is a simple queueing

simulation composed of eight simple processes. There are three sources, four washes and a

single sink process arranged in a feedforward topology, with feedback to two of the source

processes (see Figure 3.7). Mapping each of the three process types to a process type

defined earlier, the source process is a hybrid source-fork simple process. It "creates cars

and deterministically routes them to one of two wash processes. The wash process is a

merge process. It simply adds a delay to simulate the wash time for the car and routes it

to the exit. The exit process is a hybrid merge-router-sink process. When a car enters the

exit, - determination is made whether to re-wash or consume the car. If the car is to be

re-washed, it determines to which source the car will be sent. Otherwise, it consumes the

car, with a print stateme it sent signalling the car has exited the wash. By the Chandy-

Misra protocol, each process has its own clock and processes independently of the other
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Figure 3.7. The Car Wash

processes in the system.

The car wash is a deterministic simulation, with all process delays set a priori. This

was done so that each simuiated run of the car wash would yield repeatable results and

cars would exit in a predictable order. Once a testbench was established, each output from

the implerrntaticn of the various topologies would be compared against the benchmark.

In this way, a determination could be made of the "correctness" of the siraulation. Any

changes to simulation due to the topological configura ion were detected by comparing the
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output files. Program errors were also detected using the output files.

3.7 Summary

The concept of a logical process has traditionally been mapped to a single process in

the physical system, resulting in minimal computation for the logical process. Retaining

that approach for the general decomposition of the system to be modelled, simple processes

can be combined to form single logical processes with the objective of reducing communi-

cations within the system and possibly increasing the computation of the logical process.

The effect of combining processes should result in a faster, more efficient simulation.
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IV. Empirical Analysis

4.1 Introduction

This chapter details the experimental design, then describes and analyzes the per-

formance. Rules of thumb for partitioning a phyical system are described. General obser-

vations and lessons learned from the experimental procedure are highlighted.

4.2 Experiment Design

The car wash was configured to run on 8, 4, 2 and 1 nodes. Two different methods

were used. The first method maps multiple logical processes to each node. The commu-

nication paradigm assumed is the traditional Chandy-Misra approach. The filter used in

this implementation was the Chandy-Misra filter supplied by UVA. In the 4, 2 and 1 node

combinations, multiple processes were run on a single node.

The second method mapped a single logical process with a next event queue to a

single node. The paradigm assumed is the distributed event list algorithm, in which each

logical process :s assumed to consist of multiple simple processes within the system which

have been combined with a local next event queue. The filter used in this approach was a

distributed event list filter developed for this thesis. In the 4, 2, and 1 node combinations,

a single process was executed on each node. The eight node implementation for each filter

utilized a round robin mapping of the processes, one per node. The topology of the car

wash remained unchanged from the original.

Because the AFIT hypercube has eight nodes, the fine grain (one process per node)

mapping of processes to node was exact for this simulation. Each process using the Chandy-
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Figure 4.1. Four process configuration #1

Misra filter contained a simple process (i.e. a source, sink, or wash). Each process using

the distributed event list filter contained a simple processs combined with a next event

list. While there were many possible mappings of processes to nodes available, the 1,

2, 4, and 8 node mappings were selected because they evenly divide the cube, providing

cube sizes of increasing dimension (0, 1, 2 and 3). Using combinations of two processes

for load balancing, there were 28 combinations possible for the four node version. In the

interest of time and scope, two configurations were chosen. The simple processes were

grouped as in Figure 4.1 in the first configuration. This configuration was selected because

it effectively consolidated communications lines between processes. Figure 4.2 illustrates

the groupings for the second configuration. This configuration was chosen to exploit the

inherent concurrency between groups of processes, attempting to examine the effect of

combining processes that do not communicate and are systemically parallel.

Using 4 process combinations for load balancing, there were 70 possible configurations
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Figure 4.2. Four process configuration #2

for 4 process combinations for the two node version and two configurations were chosen.

The simple processes were grouped as in Figure 4.3 for the first implementation. Again,

this configuration was chosen to consolidate communications lines between processes. The

second configuration (see Figure 4.4) was also chosen to examine the inherent concurrency

of the topology.

The one node version for the Chandy-Misra filter consisted of placing all processes

on a single node. The one node version used with the distributed event list filter served as

the sequential baseline, with all processes consolidated into a single logical process with a

next event list.

4.3 Results and Analysis

Several experiments were conducted. The focus and primary intent was to make a

determination of how the simulation could be divided most effectively to promote speedup.
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A comparison of execution times for the various configurations was done in an attempt to

answer the following questions:

1. If processes are to be grouped, what is the best allocation for these groupings?

2. How many nodes should be used to provide the most significant speedup?

3. Which paradigm exhibits the best performance? Under what circumstances?

After gathering an initial set of results, a general set of heuristics was developed,

based on hypotheses formulated from the analysis of the data. To test the hypotheses, the

same set of tests were run again on a slightly different topology (see Figure 4.8). The car

wash was used again, this time without the feedback to the sources.

The results for the tests were analyzed using three different comparisons. The first

comparison assessed the filter performance in each configuration. The second comparison

assessed the impact of the configuration and process grouping on performance. Finally,

each configuration was compared to the sequential version to assess the speedup attained.

All comparisons were evaluated based on the best of three execution times of the simulation.

4.3.1 Comparison 1 This comparison assessed the performance of the Chandy-

Misra filter versus the distributed event list filter implementation. This analysis focuses

primarily on the filter, as well as noting some interesting performance differences for the

permutations of the 4 and 2 node mappings. All four node mappings were compared. Since

the 4 and 2 node versions had two configurations each, the execution times for the best

(fastest execution times) configuration were used. All times are fastest execution time of
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Table 4.1. Chandy-Misra Filter Run Times

Performance for Chandy-Misra Filter
Logical Run Average Execution Time (in seconds)

Time 8 Nodes 4 Nodest 2 Nodes+ T 1 Node
1000 1 1 2 14
5000 24 6 24 na
10000 97 18 69 na
15000 299 32 97 na
20000 554 45 114 na

tExecution times are for configuration 2
lExecution times are for configuration 2
na-no data available, run incomplete

Table 4.2. Distributed Event List Filter Run Times

Performance for Distributed Event List Filter
Logical Run Average Execution Time (in seconds)
Time 8 Nodes 4 Nodest 2 Nodes+ 1 Node
1000 1 2 1 1
5000 12 21 26 24
10000 41 71 98 95
15000 87 150 218 210
20000 151 261 384 372

tExecution times are for configuration 1
tExecution times are for configuration 1

three trials. These times are displayed in Tables 4.1 and 4.2. The tomparison for the 8, 4,

and 2 node versions are graphically represented in Figure 4.5.

The distributed event list algorithm had the lowest execution times at the extremes,

while the null messages algorithm exhibited the best performance at the intermediate

levels. It was presumed that the execution times would be approximately equal across

the board, with the execution times for the distributed event list algorithm being slightly
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better at the intermediate levels. However, the execution times for the Chandy-Misra filter

are almost four times greater than the DEL filter for the eight node mapping ( it failed to

complete for run times greater than 5000 for the 1 node version) while the performance is

much better than the DEL filter for the both the 4 and 2 node mappings. In the case of

the 1 node mapping the disparity is easily explained by the fact that the Chandy-Misra

implementation maps all eight processes to the same node and intranode communication

for the single node is a bottleneck. The one node mapping for the distributed event list

filter is the sequential model, which has no communication overhead.

The 8, 4 and 2 node mappings are less easily explained and not intuitively obvious.

It is presumed that the number of messages generated throughout the simulation is most

significant, especially in the case of the 8 node version. The number of messages generated

in the distributed event list algorithm is almost three times greater than the number

of messages generated in the null messages algorithm. This in itself was a perplexing

phenomenon, but it explained the poor performance of the distributed event list algorithm.

The algorithm has to cope with both the overhead for event list insertions as well as the

tremendous communication load. Performance increases with the number of nodes due to

the partitioiiing or shortening of the event list within the process. The disparity of the two

intermediate mappings is linked most closely to the interprocess communications and the

effect of the differing topologies, which will be discussed in the following section.

The hypothesis at this point is that, contrary to expectation, for a finer granularity or

partitioning, the distributed event list algorithm yields good performance, but for overall

performance improvement, multiple processes can be mapped to an intermediate number

of nodes.
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Figure 4.5. Filter Comparisons for 8, 4, and 2 node mappings

4.3.2 Comparison 2 This comparison assessed the performance of the different con-

figurations on the 4 and 2 node versions of the simulation. The analysis focuses primarily

on the effect of the topology of both the logical process itself (topology of the simple pro-

cesses) and the resulting topology of the system once the processes were combined. The 4

and 2 node versions compared are the two configurations used for each. Results are found

in Tables 4.3 and 4.4 and corresponding Figures 4.6 and 4.7.

Comparing both configurations for the 4 node mappings, configuration 2 outper-

formed configuration 1 using the Chandy-Misra filter. This performance is attributed to

the fact that the first configuration groups processes that are directly connected by a

communication line. Processes that are directly connected have an additional overhead of

intranode communication which is not present in the second configuration. In addition, the
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Table 4.3. Configuration Comparisons for the Chandy-Misra Filter

Logical Run Average Execution Time (in seconds)
Time 4 Nodes 2 Nodes

Configuration 1 Configuration 2 Configuration 1 Configuration2

1009 2 1 2 2
5000 37 7 na 24
10000 146 18 na 25
15000 324 29 na 66
20000 580 47 na 114

na-no data available, run incomplete

Table 4.4. Configuration Comparisons for the Distributed Event List Filter

Logical Run Average Execution Time (in seconds)
Time 4 Nodes 2 Nodes

Configuration 1 Configuration 2 Configuration 1 Configuration2

1000 2 2 1 3
5000 21 40 26 46
10000 71 155 98 177
15000 150 343 218 384
20000 261 611 383 710
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second configuration takes advantage of the inherent parallelism of the simulation by par-

titioning so that those processes not dependent on each other for communicationto execute

in a nearly parallel fashion, with no intranode communication to slow the processing.

The execution times of configuration 2 were more than double those for configuration

1 using the next event filter. The performance in this case was initially surprising, but

less so on reflection. Since the distributed event list implementation combines the actions

of simple processes into a single executing process, the first configuration effectively elimi-

nates four communication lines 7nd grants the logical processes more concurrency. In the

second configuration, while the actual number of communication lines are actually fewer

than the first configuration, the effective number of communication lines remain unchanged

from the original topology with eight processes. Due to this phenomenon, the processes

communicate more frequently. There are no communication bindings at all within the logi-

cal process and the logical processes are communication intensive, making communications

the driving factor. There are filter implementation factors that also drive the performance

of the simulation. The distributed event list filter spends quite a bit more time waiting

when receiving messages from other processes. Input channels are read selectively to limit

the size of the buffers required for input, as well as to ensure events are processed in the

correct order. The Chandy-Misra implementation will read a single message from all input

channels as long as a message has been received on each channel. As long as messages

tend to arrive on all channels, the Chandy-Misra filter seems to spend less time waiting to

communicate than the event list filter.

Comparing both configurations for the 2 node mappings gave the most interesting

results. Configuration 1 using the null messages filter failed completely for any run time
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greater than 10000 logical time units. The distributed event list version for the same

configuration exhibited the best performance, returning with the lowest execution times

overall.

The first configuration for the distributed event list implementations returned the

lower execution times of the two. This was surprising because the original presumption

was that because the second mapping effectively removed the feedback loops within the

system, as well as boosting the computation of the logical process, it would give the better

performance results. Instead, it seems the second mapping failed to take advantage of the

inherent concurrency within the system when the processes were combined into a single

process. In addition, the logical process must now communicate more frequently, and it is

the communication between nodes that once again dominates. This is the same phenomena

exhibited in the four node mapping.

There were two general hypotheses formed from these comparisons. The first is

that, when combining multiple nodes on a processor, it is wise to combine those processes

which have no communications links on one node. Intranode communication in these

instances are non-existent. The assumption here is that additional message traffic as a

result of intranode communication overwhelms the buffers of the hypercube and intensifies

the communications overhead. The general premise of the hypercube design is to optimize

message-passing between nodes; it is assumed processes that communicate will be placed

on different nodes. In a conversation with an Intel service representative, he stated that

no one in his experience had placed communicating processes on a single node, so he had

no real idea of the effect of intranode communication on message buffer behavior. He was

of the opinion that stacking communicating processes on a node would be likely cause an

4-11



600

4 Nodes, Config 1
500"

4 Nodes, Config 2
E
1-E 400- 2 Nodes, Config 2

0

8 300-

0)
200-

100-

0I
0 2 4 6 8 10 12 14 16 18 20

Logical Run Time
(Thousands)

Figure 4.6. Configuration Comparisons for Chandy-Misia Filter

overflow for an excessive number of messages passed between the processes(20).

The second hypothesis pertains to combining processes effectively into a single pro-

cess. In this scenario, it seems best to combine processes which share communication lines

to the greatest extent possible. In addition, the more communication lines that are ab-

sorbed, the fewer nodes necessary. In addition to significantly reducing communication,

this strategy boosts the logical process' 'computation'.

4.3.3 Comparison 3 The lowest execution times overall were displayed by the sec-

ond configuration of the 4 node mapping using the null messages filter. This configuration

exhibited a speedup of 3:1 or greater compared to the sequential version for run lengths

with logical times of 5000 or greater. The next best mapping was the second configuration

of the 2 node mapping using the null messages filter. The speedup factor in this instance
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Figure 4.7. Configuration Comparisons for DEL Filter

was 2:1 for run lengths with logical times of 15000 or greater. The totally distributed

version for the Chandy-Misra version was worse than times exhibited for the sequential

version, while the distributed event list version exhibited a speed up factor of at least 2:1.

As a general observation, the data seems to indicated that the sequential version of the

simulation was very efficient. This ma, be credited to the lack of computation for the pro-

cesses, as well as the feedforward tolology of the simulation, which maps more naturally

to a sequential flow of events. Under t0'-se circumstances, perhaps the expectation for a

significant amount of speedup was overly optimistic.

A few general hypotheses can be made in looking at the execution times overall. Fir t

of all, using an event list within the logical process means that a sacrifice in performance

is made due to a loss of concurrency in the partitioning. However, when distributed over

an increasing number of nodes, there are significant performan:e gains. Overall, the best

4-13



SOURC SOURC SOURC

WASH WASH WASH WASH

Figure 4.8. Topology 2-Car Wash without Feedback

performance is demonstrated when properly partitioned processes share a computing node.

4.4 Validation

Once general hypotheses were made concerning the performance of the differing con-

figurations, the same experiments were applied again, this time to a topology without

feedback (see Figure 4.8) to determine if the generalizations and data trends would hold

for a different topology. The execution times for both filters are summarized in Table 4.5

and 4.6.

The expectation for this performance was that overall execution times would decrease,

due to a reduction in the number of null messages generated as a result of removing the
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Table 4.5. Chandy-Misra Filter Run Times-Without Feedback

Performance for Chandy-Misra Filter
Logical Run Average Execution Time (in seconds)
Times 8 Nodes 4 Nodes 2 Nodes 1 Node
1000 3 3 2 26
5000 71 71 14 242
10000 356 322 43 611
15000 674 765 91 1126
20000 1212 1386 155 1829

fExecution times for configuration 2
tExecution times for configuration 2

Table 4.6. Distributed Event List Filter Run Times-Without Feedback

Performance for Distributed Event List Filter
Logical Run Average Execution Time (in seconds)

Time 8 Nodes 4 Nodest 2 Nodes+ 1 Node
1000 27 1 1 1
5000 700 23 16 17

10000 3034 88 64 64
15000 6551 195 117 142
20000 11650 345 255 252

fExecution times for configuration 2
tExecution times for configuration 1
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feedback loops. As demonstrated by the data, this was not the case. Overall, execution

times for a majority of the configurations increased significantly. This phenomena is best

explained by the deficiencies of the simulation. The source processes of the implementation

do not terminate after the maximum simulation time has been reached. Consequently, the

sources run ahead of the rest of the processes and generate excessive messages within the

simulation. With the removal of the feedback loops, the sources are never interrupted

to process incoming messages and basically "run amok". The increase in the number of

messages generated accounts for the overall increase in run times.

Several observations can be made comparing the two topologies. First of all, the

performance for the second configuration of the 4 node mapping went from outstanding

to poor, exhibiting a slowdown of more than 10:1 from the original topology. The per-

formanc. of the second configuration of the 2 node mapping stayed fairly consistent, and

demonstrated the best performance for this topology. In addition, both the 1 and 2 node

mappings ran to completion for all points tested, unlike the feedback version of the same

mapping.

Another observation to note is that the Chandy-Misra filter for the topology without

feedback yields execution times that are twice that of the topology with feedback, in all

cases except the 2 node version discussed earlier. In that case, the execution times are

slightly less than or approximately equal across the topologies. The DEL filter also shows

an increase in execution times (decrease in performance) overall for all the mappings. This

behavior was not at all expected; on the contrary, it was expected that the removal of feed-

back in the system would provide speedup overall the configurations. Again, this increase

in execution times may be linked to the increase in the number of messages generated. Of
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additional note, there was improvement in performance for those configurations that would

not run to completion previously. Assuming that an overrun of message buffers caused the

problems in the first configuration, this phenomena is doubling perplexing and at this time

without reasonable explanation.

The next observation of interest is that the DEL implementation once again pro-

vides no real speedup over the sequential version. On the contrary, the 8 node version

demonstrates a slowdown of almost 1:6 as opposed to the 1:3 slowdown of the feedback

version.

The observation of most interest is that not all performance exhibited in the feedback

version of the physical system is carried over in the system configuration with no feedback.

In particular, both configurations of the 4 node mappings for both filters shift behavior

radically. This leads to the hypothesis that the system topology of a simulation has a sig-

nificant impact upon simulation performance and must be considered prior to partitioning

a system.

4.5 Pro'!ems Encountered

As a general observation, more was learned from the implementation of the code

before actually conducting the experiments. Problems with the implementation of various

test configurations resulted in uncovering defects in the distributed event list algorithm,

and revealed a relationship between the 'inner' topology of the logical process and the

system topology, emphasizing the combined impact on simulation performance.
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4.5.1 Simulation and Filter Connectivity Some of the initial problems with the car

wash were due to a misunderstanding of the implementation of the filters. The primary

purpose of the SPECTRUM testbed was to separate the application and the synchroniza-

tion protocol. In this way, experiments could be conducted in a common environment, and

any changes in simulation performance would be attributable to either the effect of chang-

ing the simulation or the effect of changing the synchronization protocol. After becoming

more familiar with both the application, filter and interface routines, it became apparent

that a strict separation of application from protocol is trivial in theory and very difficult

in actual implementation. To properly incorporate the fundamental assumptions of the

synchronization protocol, assumptions had to be made about the composition, homogene-

ity, and logical ope 'ion of the logical processes within the simulation. This was made

obvious during the implementation of configuration 1 of the 4 node mapping utilizing the

next event queue. The original intent of the experiment was to utilize a single filter, the

original Chandy-Misra filter supplied with SPECTRUM, under the premise that the filter

would be generic enough to support any LP configuration, especially when the application

was unchanged. The original attempts at incorporating this filter for use with this LP

configuration resulted in incorrect simulation results. It was initially conjectured that the

combining of certain logical processes resulted in a fundamental change in the simulation

itself, altering the simulation. Further debugging of the implementation revealed an inher-

ent incompatibility between the newly defined logical process and the filter in use. This

incompatibility led to the development of the event list filter.

The implication here is that the synchronization protocol and the application are

intrinsically related. Furthermore, there exists a binding not only between applications
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and protocols, but possibly between the construction or topology of the logical process

and the filter. While this may not apply to all communication protocols, there exists a

very strong tie in the case of the Chandy-Misra algorithm.

After studying the Chandy-Misra algorithm at length, this binding may be explained

by the fact that in this paradigm, the logical process is an active entity in the communica-

tion process. A logical process alternates between computing and waiting to communicate.

A waiting process uses the following rules(7):

* The logical process waits on all input lines whose channel times equal the logical

process' clock time.

e The logical process waits on all output lines where a message is ready to be sent.

SPECTRUM attempts to abstract the logical process to the point where the com-

munications are transparent, but the logical precess by implication has full knowledge and

access to all input and output communication lines. While a logical process' computation

may be abstracted from the remainder of the system, abstracting the communications be-

tween processes may only be possible to the degree of detail of how the communication

is carried out at the machine level. The interface layer between the filter and the logical

process must have access to information from both or the application and filter must share

information. If an interface were used, the implementation would make use of information

that is application specific. A generic interface at this point does not seem feasible. In

both of the filters used in the experiments, application information was built into the filter.

Another Chandy-Misra filter built to work with the VHDL simulation was also tried with

this application. It worked well with the 8 node version, and returned execution times
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that were generally lower than those for the SPECTRUM Chandy-Misra filter. However,

for the 4 and 2 node versions, the program generally deadlocked for all logical run times

greater than 5000. The general speculation for the deadlock is that some assumption made

in the filter holds for the VHDL application, but does not hold for the car wash applica-

tion. Because a complete data set could not be gathered, this filter was abandoned for the

comparisons and analysis.

Reynolds noted in his experiments with SPECTRUM that there is more of a binding

between applications and protocols than was previously expectcH(21). It may not be

possible to totally separate an application from its communications paradigm so that the

two are totally independent. However, it may be possible to create a filter that is applicable

to a class of applications, where certain assumptions about application properties are made

of a set of applications in general.

4.5.2 The DEL Algorithm and Deadlock While implementing the 4 node config-

uration, it was found that the simulation would deadlock in configuration 1 and run to

completion without any problems in configuration 2. It was thought at first that the system

buffers were being saturated with null message traffic but testing ruled that possibility out.

The system was deadlocked and this should not have been possible. Tracing through debug

messages of the program uncovered a flaw in the distributed event list algorithm, which

resulted in an anomaly for the simulation under certain circumstances and topologies.

Mannix states that two conditions are necessary to preclude deadlock in the simula-

tion (see Section 3.5.2). The first null condition ensures that an LP sends null messages

in conjunction with the receipt of messages from communicating LPs. The anomaly is
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the result of an inappropriate assumption concerning the calculation of the lower bound

for the next outgoing message and the receipt of incoming messages by a logical process,

which results in a violation of this null condition.

Based on the model in Section 3.5.2, two possibilities are considered during the

calculation of the lower bound min(lpclock + delay, Lneq) for the next outgoing message.

The first possibility is lp-clock + delay. This possibility will account for any departures

from the logical process resulting from the arrival of a null or event message. It indicates

that for any messages received by a logical process, a resulting departure from the LP

cannot take place before Ip-clock, which is a lower bound for the time of the arrival, and a

positive delay, E, which is assumed for every process.

The second possibility which must be considered is a scheduled departure on the next

event queue. Since this departure requires no further processing, it will be sent when it

reaches the head of the next event queue, at time Ldepart. Since it hasn't been executed,

t-depart > Ip-clock, but it could be sent before the next arrival has been processed. Hence

the desired lower bound is min(lp-clock + delay, Ldepart). However, the next scheduled

departure, if it exists, could be anywhere in the next event queue, so that Lneq :_ Ldepart.

Thus Lneq is used in the calculation of the lower bound.

This lower bound gives correct results for all the configurations tested except the

first four node configuration, where an anomaly occurs. The anomaly results from the

assumption that Lneq is a consistently increasing value, which would guarantee that any

sequence of calculated lower bounds would be monotonically increasing. Due to the fact

that the queue is a priority queue, initially this does not appear to be an inconsistent
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assumption. What this model fails to take into account is the possibility of an arrival

during the read phase which places an event at the top of the next event queue.

This opens the possibility that some calculation of min(lp-clock + delay, Lneq) could

result in a lower value than the previous calculation. Sending a message with this lower

time would violate the assumption of monotonically increasing channel times. The anomaly

is a direct result of the topology of the logical process. Using LP 4 as the example, the

communications paths of the simple processes within 'he logical process defines multiple

entry and exit points for the LP. Although these multiple entry points are effectively

reduced to a single communications line between the two aggregate LPs, the anomaly is

the result of the multiple destination processes available to an incoming message, which

effects that event's eventual placement on the next event queue.

Correction of the anomaly needs to focus on the calculation of the lower bound for

the next outgoing message. Because any departure resulting from a newly received message

at time t-msg cannot occur until time Lmsg + E, a more accurate calculation of the lower

bound is necessary. For any event on the next event queue, Lneq is not necessarily a

departure. The information needed by the filter is not the time of the next event, Lneq,

but the time of the next departure, designated Ltdepart. Therefore, the correct calculation

for the lower bound of the time of the next arrival must be

min(lpfclock + delay, Ldepart)

This calculation accounts for the next possible departure from the LP as a result of a newly

received message, or a scheduled event departure from the queue. Now, any receipt of a
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message, null or event, should result in the appropriate calculation for the lower bound

of the next departure, such that a null or event message will always be sent in between

read phases for the logical process. The correctness of the proposed lower bound can

be demonstrated to guarantee an increasing value for Ldepart. The variable Ldepart is

determined from either a new arrival to the LP or as the result of an event currently

scheduled on the next event queue. For a departure which is the result of a new arrival,

Ldepart is calculated Ldepart = Linsg +delay. The delay, e > 0, is a positive constant and

the property of monotonicity assures that any incoming messages for the logical process will

be monotonically increasing, assuring Lmsg is increasing. Therefore, an increasing value for

Ldepart is guaranteed. For a departure which is a result of an event currently scheduled on

the next event queue, all events on the queue are increasingly ordered according to Lmsg.

For the case in which Lmsg is an actual departure, Ldepart increases due to the processing

of the next event queue. For an intermediate event which may prompt a later departure,

the increasing order of the events is guaranteed by the ordering of the next event queue.

Any delay added to an intermediate event, rcsulting in the new value t-depart is positive;

therefore, an increasing vaue for t-depart is guaranteed.

Deadlock in the system is caused by a two-fold effect, that of the logical process

anomaly discussed above and the propagation of the effect of the anomaly throughout the

logical system due to the system topology. In the current implementation, if the anomaly

occurs, an out-of-order message won't actually be sent. Instead, the null message is not

sent, depriving the following LP of the latest timing information. This in itself won't

cause deadlock. The communicating logical processes may be bound together in a cyclic

relationship. In the car wash scenario, because of the composition and topology of the
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LPs in question, the communicating processes depend upon each other to advance their

respective logical clocks. Any repetition of this scenario for any logical process in the cycle

will result in deadlock for the entire system (see Figure 4.9).

This is a phenomenon not reported by Mannix, possibly due to the nature of the

submodel he developed. The topology of the submodel itself is strictly tandem, with every

simple process linked in tandem to the next simple process by a single link and an effective

single connection with every other logical process within the system.

4.6 Summary

The results of the experiments in many cases were contradictory to performance

expectations. The simulation deficiencies made it necessary to extrapolate information

from the data trends and take those factors impacting performance into account. In spite of

the problems, the experiments generated a few general guidelines for partitioning processes

and validated the relationship between topology and its affect on communication and

simulation performance.

Based on experience gained during implementation of the communications filters, a

strong bond exists between the logical process topology and the communications proto-

col implementation. For the same application, a different filter was necessary to obtain

correct simulation results due to differences in the topology of the logical process and the

information required by the filter as a result of these diffarences.

In addition, it was noted from the experiments that the logical process topology plays

as significant a role in the simulation performance as the overall topology of the system.
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This 'inner' topology affects the way logical processes consume and process event messages.

The current distributed event list algorithm exhibits a performance anomaly resulting in

deadlock for certain configurations. Although time did not permit revision of the code, the

revision in the calculation of the lower bound for future message arrivals should correct

this anomaly.
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V. Conclusions

5.1 Overall Performance the Communication Algorithms

The performance of the null messages algorithm mapped to multiple processes was

much better than originally anticipated. The general expectation was that regardless of

most circumstances, because all of the processes were separate and distinct, there would

always be so much communication between them that the communication factor would

outweigh any mapping or partitioning considerations. Contrary to expectations, however,

the strict null message implementation had the overall best performance for the scenarios

investigated. What must be noted is that it is the overall impact of the topology and the

partitioning of the workload, not necessarily the performance of the filter that plays the

most critical role in contributing to the simulation execution time.

The distributed event list implementation did not perform as well as originily an-

ticipated. An initial hypothesis for the poor performance is that it generates many rore

null messages than the null messages algorithm, (up to three times as many in this re-

search). In addition, it was discovered that the topology of the communications within the

logical process being modelled impacts the performance of the synchronization protocol.

The algorithm maps several simple processes into an aggregate, larger logical process and

in doing so implicitly imposes a new topology on the system being modelled, as well as

a new set of evnt consumption rules for the logical process. The interaction of the t )

made it necessary to customize the synchronization protocol to account for the next event

queueing and tile aggregate processes. A performance anomaly of the flter under certain

topologies uncovered a flaw in the distributed event list algorithm which can potentially
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cause deadlock in the system when configured for certain topologies. The algorithm gave

correct results for allconfigurations which did not deadlock. For the configuration that did

deadlock, it was possible to fine tune the application and logical process delays to avoid

the anomaly by using a more conservative time lower bound to give correct results for the

simulation.

5.2 Topological Effects

When partitioning a system so that multiple processes will run on a single node, the

general rule is to take advantage of processes that have no communications lines common

and in addition can be run in parallel. Lack of communication lines implies that the only

communication will be communication between processes on other nodes. Since processor

cycles are already split between the processes sharing the processor node, no cycles are

wasted on communications between processes on the same node, and processes need not

wait on each other.

The converse is true if the desire is to aggregate the processes into a single logical

process. The lack of communications in this case destroys the inherent parallelism within

the system and increases the message traffic between logical processes. The approach to

utilize in this instance is to combint those processes which share communication lines. This

increases computation and decreases communications, as long as the aggregate processes

are loosely coupled based on the system topology. If the logical processes are communi-

cation dependent, there Is less concurrency In the resulting system and performance tends

to drop. An important result here is that the choice of m~ittiple processes vs. a single pro.

cess per node results in different partitioning schemes. The system designer Is cautioned
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against tuning the system performance using multiple processes ( which is easier to do),

and then combining those processes to improve simulation performance.

Feedback loops within a topology may not always create additional null messages

within a system. Simulation implementation deficiencies skewed the results for the no

feedback configuration, leading to less than conclusive results from which a meaningful

hypothesis can be made. However, the data does point out the fact that for processes with

little computation, the absence of feedback which serves as the sole source of input for a

process may allow that process uninterrupted, freewheeling computation. If this process

is responsible for generating messages within the system, this freewheeling computation

may turn into freewheeling communication and cause an explosion of messages within the

system. The impact of the feedback loop in the system will depend not only on the overall

topology of the logical system but the composition or function of the logical processes

within the system as well.

5.3 Recommendations for future research

The SPECTRUM testbed is a good tool for conducting experiments in a common

environment, but many improvements could be made to the overall environment to make

it more useful. The SPECTRUM application code and the Chandy-Misra filter Imple-

mentation should be ,,dified for realism and to more accurately match the paradigm.

Incorporating data collection of message passing statistics and message buffering informa-

tion into SPECTRUM would be useful for data gathering and program debugging. In

addition, the current implementation of the distributed event list filter should be corrected

as outlined in Chapter 4.
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Further investigation should be made of the level of dependence between the appli-

cation and the filter. In this research, the application required information from the filter

for proper ordering of events and the filter required information from the application to

assure proper synchronization. Is it possible to design a filter to fit any general application?

What is the minimum interface necessary between an application and the filter?

This research uncovered several observations that should be explored. The perfor-

mance of the distributed event list algorithm was e:tremely poor, particularly for the

topology with no feedback. Is this behaviour related to implementation defects or is there

some other explanation? There were some configurations which failed to run to completion

in the feedback topology, yet ran without problem in the no feedback topology. Assuming

that saturation of message buffers caused problems in the first case, if more messages were

generated in the second topology, why did the problem disappear? These inconsistencies

merit further investigation.

There is much more to be explored. Time constraints did not allow an evaluation

of the effect of spin loops on performance. This is yet another factor of performance that

must be considered. The experiments for this study focused on a single application with an

evenly balanced topology. Future research should include a wider range of applications and

experimentation with topologies that are more challenging than the topology studied here.

The number of processor nodes available here is a limiting factor and future experiments

should investigate with a larger number of processing nodes. Future investigations should

include analyses of more complicated, computationally intensive simulations to discover if

the stated generalities hold over a greater set of applications.
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